Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Nat Prod Rep ; 41(2): 273-297, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-37942836

RESUMO

Covering: 2000 to up to 2023α,ß-Dehydroamino acids (dhAAs) are unsaturated nonproteinogenic amino acids found in a wide array of naturally occurring peptidyl metabolites, predominantly those from bacteria. Other organisms, such as fungi, higher plants and marine invertebrates, have also been found to produce dhAA-containing peptides. The α,ß-unsaturation in dhAAs has profound effects on the properties of these molecules. They display significant synthetic flexibility, readily undergoing reactions such as Michael additions, transition-metal-catalysed cross-couplings, and cycloadditions. These residues in peptides/proteins also exhibit great potential in bioorthogonal applications using click chemistry. Peptides containing contiguous dhAA residues have been extensively investigated in the field of foldamers, self-assembling supermolecules that mimic biomacromolecules such as proteins to fold into well-defined conformations. dhAA residues in these peptidyl materials tend to form a 2.05-helix. As a result, stretches of dhAA residues arrange in an extended conformation. In particular, peptidyl foldamers containing ß-enamino acid units display interesting conformational, electronic, and supramolecular aggregation properties that can be modulated by light-dependent E-Z isomerization. Among approximately 40 dhAAs found in the natural product inventory, dehydroalanine (Dha) and dehydrobutyrine (Dhb) are the most abundant. Dha is the simplest dehydro-α-amino acid, or α-dhAA, without any geometrical isomers, while its re-arranged isomer, 3-aminoacrylic acid (Aaa or ΔßAla), is the simplest dehydro-ß-amino acid, or ß-enamino acid, and displays E/Z isomerism. Dhb is the simplest α-dhAA that exhibits E/Z isomerism. The Z-isomer of Dhb (Z-Dhb) is sterically favourable and is present in the majority of naturally occurring peptides containing Dhb residues. Dha and Z-Dhb motifs are commonly found in ribosomally synthesized and post-translationally modified peptides (RiPPs). In the last decade, the formation of Dha and Dhb motifs in RiPPs has been extensively investigated, which will be briefly discussed in this review. The formation of other dhAA residues in natural products (NPs) is, however, less understood. In this review, we will discuss recent advances in the biosynthesis of peptidyl NPs containing unusual dhAA residues and cryptic dhAA residues. The proposed biosynthetic pathways of these natural products will also be discussed.


Assuntos
Produtos Biológicos , Aminoácidos/química , Peptídeos/química , Proteínas , Isomerismo
2.
J Nat Prod ; 87(1): 132-140, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38157445

RESUMO

Mylnudones A-G (1-7), unprecedented 1,10-seco-aromadendrane-benzoquinone-type heterodimers, and a highly rearranged aromadendrane-type sesquiterpenoid (8), along with four known analogs (9-12), were isolated from the liverwort Mylia nuda. Compounds 1-6 and 7, bearing tricyclo[6.2.1.02,7] undecane and tricyclo[5.3.1.02,6] undecane backbones, likely formed via a Diels-Alder reaction and radical cyclization, respectively. Their structures were determined by spectroscopic analysis, computational calculation, and single-crystal X-ray diffraction analysis. Dimeric compounds displayed cytoprotective effects against glutamic acid-induced neurological deficits.


Assuntos
Alcanos , Hepatófitas , Sesquiterpenos de Guaiano , Sesquiterpenos , Hepatófitas/química , Estrutura Molecular , Sesquiterpenos/farmacologia , Sesquiterpenos/química , China
3.
J Adv Res ; 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37931656

RESUMO

INTRODUCTION: Atherosclerosis, a major contributor to cardiovascular disease, remains a significant health concern worldwide. While previous research has shown that acid-sensing ion channel 1 (ASIC1) impedes macrophage cholesterol efflux, its precise role in atherogenesis and the underlying mechanisms have remained elusive. OBJECTIVES: This study aimed to investigate the role of ASIC1 in atherosclerosis and its underlying mechanisms. METHODS: First, data from a single-cell RNA sequencing (scRNA-seq) database were used to explore the relationships between ASIC1 differential expression and lipophagy in human atherosclerotic lesions. Finally, we validated the role of ASIC1/RIP1 signaling in lipophagy in vivo (human and mice) and in vitro (RAW264.7 and HTP-1 cells). RESULT: Our results demonstrated a significant increase in ASIC1 protein levels within CD68+ macrophages in both human aortic lesions and AopE-/- mouse lesion areas compared to nonlesion regions. Concurrently, there was a notable decrease in lipophagy, a crucial process for lipid metabolism. In vitro assays further elucidated that ASIC1 interaction with RIP1 (receptor-interacting protein 1) promoted the phosphorylation of RIP1 at serine 166 and transcription factor EB (TFEB) at serine 142, leading to disrupted lipophagy and increased lipid accumulation. Intriguingly, all these events were reversed upon ASIC1 deficiency and RIP1 inhibition. Furthermore, in ApoE-/- mouse models of atherosclerosis, silencing ASIC1 expression or inhibiting RIP1 activation not only significantly attenuated atherogenesis but also restored TFEB-mediated lipophagy in aortic tissues. This was evidenced by reduced TFEB Ser-142 phosphorylation, decreased LC3II and LAMP1 protein expression, increased numbers of lipophagosomes, and a decrease in lipid droplets. CONCLUSION: Our findings unveil the critical role of macrophage ASIC1 in interacting with RIP1 to inhibit lipophagy, thereby promoting atherogenesis. Targeting ASIC1 represents a promising therapeutic avenue for the treatment of atherosclerosis.

4.
Int J Biol Macromol ; 252: 126450, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37634779

RESUMO

The estrogen receptor-positive (ER+) breast cancers constitute more than 50 % of breast cancers, seriously threatening the health of women. Unfortunately, the detection and targeted therapy of ER+ breast cancers remain a challenge. Here, a novel nucleic acid aptamer S1-4 was developed to specifically target ER+ breast cancer MCF-7 cells by using Cell-SELEX and nucleic acid truncation strategies. The affinity dissociation constant of the binding of aptamer S1-4 to MCF-7 cells was 97.6 ± 7.5 nM in vitro. Compared with HER2+ breast cells SK-BR-3 and triple-negative breast cancer cells MDA-MB-231, MCF-7 cells were selectively recognized and targeted by aptamer S1-4. Fluorescence tracing in vivo results also indicated that aptamer S1-4 selectively targeted the cell membrane of tumor tissues in MCF-7- but not in SK-BR3 or MDB-MA-231-bearing mice. This selectively developed novel aptamer probe S1-4 with high affinity could be used for the diagnosis and treatment of ER+ breast cancers.


Assuntos
Aptâmeros de Nucleotídeos , Neoplasias da Mama , Ácidos Nucleicos , Humanos , Feminino , Animais , Camundongos , Neoplasias da Mama/metabolismo , Aptâmeros de Nucleotídeos/metabolismo , Receptores de Estrogênio/genética , Células MCF-7 , Linhagem Celular Tumoral
5.
Nat Commun ; 14(1): 4001, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414771

RESUMO

Diterpene synthase VenA is responsible for assembling venezuelaene A with a unique 5-5-6-7 tetracyclic skeleton from geranylgeranyl pyrophosphate. VenA also demonstrates substrate promiscuity by accepting geranyl pyrophosphate and farnesyl pyrophosphate as alternative substrates. Herein, we report the crystal structures of VenA in both apo form and holo form in complex with a trinuclear magnesium cluster and pyrophosphate group. Functional and structural investigations on the atypical 115DSFVSD120 motif of VenA, versus the canonical Asp-rich motif of DDXX(X)D/E, reveal that the absent second Asp of canonical motif is functionally replaced by Ser116 and Gln83, together with bioinformatics analysis identifying a hidden subclass of type I microbial terpene synthases. Further structural analysis, multiscale computational simulations, and structure-directed mutagenesis provide significant mechanistic insights into the substrate selectivity and catalytic promiscuity of VenA. Finally, VenA is semi-rationally engineered into a sesterterpene synthase to recognize the larger substrate geranylfarnesyl pyrophosphate.


Assuntos
Alquil e Aril Transferases , Diterpenos , Difosfatos , Alquil e Aril Transferases/genética , Biologia Computacional
6.
Phytochemistry ; 212: 113702, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37149119

RESUMO

Three unprecedented ent-labdane and pallavicinin based dimers pallamins A-C formed via [4 + 2] Diels-Alder cycloaddition, together with eight biosynthetically related monomers were isolated from Pallavicinia ambigua. Their structures were determined by the extensive analysis of HRESIMS and NMR spectra. The absolute configurations of the labdane dimers were determined by single crystal X-ray diffraction of the homologous labdane units, and 13C NMR and ECD calculations. Moreover, a preliminary evaluation of the anti-inflammatory activities of the isolated compounds was performed using the zebrafish model. Three of the monomers demonstrated significant anti-inflammatory activity.


Assuntos
Diterpenos , Hepatófitas , Animais , Diterpenos/farmacologia , Diterpenos/química , Hepatófitas/química , Estrutura Molecular , Peixe-Zebra , China
7.
Med Res Rev ; 43(5): 1778-1808, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37183170

RESUMO

The antitumor efficacy of Chinese herbal medicines has been widely recognized. Leading compounds such as sterols, glycosides, flavonoids, alkaloids, terpenoids, phenylpropanoids, and polyketides constitute their complex active components. The antitumor monomers derived from Chinese medicine possess an attractive anticancer activity. However, their use was limited by low bioavailability, significant toxicity, and side effects, hindering their clinical applications. Recently, new chemical entities have been designed and synthesized by combining natural drugs with other small drug molecules or active moieties to improve the antitumor activity and selectivity, and reduce side effects. Such a novel conjugated drug that can interact with several vital biological targets in cells may have a more significant or synergistic anticancer activity than a single-molecule drug. In addition, antitumor conjugates could be obtained by combining pharmacophores containing two or more known drugs or leading compounds. Based on these studies, the new drug research and development could be greatly shortened. This study reviews the research progress of conjugates with antitumor activity based on Chinese herbal medicine. It is expected to serve as a valuable reference to antitumor drug research and clinical application of traditional Chinese medicine.


Assuntos
Alcaloides , Antineoplásicos , Medicamentos de Ervas Chinesas , Humanos , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/efeitos adversos , Antineoplásicos/farmacologia , Flavonoides
8.
Adv Healthc Mater ; 12(22): e2203144, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37141264

RESUMO

By conjugating a chemotherapeutic candidate drug 4ß-NH-(5-aminoindazole)-podophyllotoxin (ßIZP) and an immunosuppressive protein galectin-1 targeted aptamer AP74, a chemo-immunotherapy molecule (AP74-ßIZP) is developed against liver cancer. AP74-ßIZP can target galectin-1 and enrich the tumor microenvironment to improve the tumor inhibition ratio by 6.3%, higher than that of ßIZP in a HepG2 xenograft model. In safety evaluation, ßIZP cannot be released from AP74-ßIZP in normal tissues with low glutathione level. Therefore, the degrees of organs injury and myelosuppression after the treatment with AP74-ßIZP are lower than those with ßIZP. After 21 d treatment at a drug dose of 5 mg kg-1 , AP74-ßIZP does not cause weight loss in mice, while the weight is significantly reduced by 24% and 14% from oxaliplatin and ßIZP, respectively. In immune synergy, AP74-IZP enhances CD4/CD8 cell infiltration to promote the expression of cell factor (i.e., IL-2, TNF-α, and IFN-γ), which further improves the antitumor activity. The tumor inhibition ratio of AP74-ßIZP is 70.2%, which is higher than that of AP74 (35.2%) and ßIZP (48.8%). Because of the dual effects of chemotherapy and immunotherapy, AP74-ßIZP exhibits superior activity and lower toxicity. The approach developed in this work could be applicable to other chemotherapy drugs.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Podofilotoxina/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Galectina 1 , Neoplasias Hepáticas/tratamento farmacológico , Imunoterapia , Microambiente Tumoral
9.
J Med Chem ; 66(3): 2102-2115, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36700940

RESUMO

Although non-nucleoside reverse transcriptase inhibitors (NNRTIs) exhibit potent anti-HIV-1 activity and play an important role in the active antiretroviral therapy of AIDS, the emergence of drug-resistant strains has seriously reduced their clinical efficacy. Here, we report a series of 2,4,5-trisubstituted pyrimidines as potent HIV-1 NNRTIs by exploiting the tolerant regions of the NNRTI binding pocket. Compounds 16b and 16c were demonstrated to have excellent activity (EC50 = 3.14-22.1 nM) against wild-type and a panel of mutant HIV-1 strains, being much superior to that of etravirine (EC50 = 3.53-52.2 nM). Molecular modeling studies were performed to illustrate the detailed interactions between RT and 16b, which shed light on the improvement of the drug resistance profiles. Moreover, 16b possessed favorable pharmacokinetic (T1/2 = 1.33 h, F = 31.8%) and safety profiles (LD50 > 2000 mg/kg), making it a promising anti-HIV-1 drug candidate for further development.


Assuntos
Fármacos Anti-HIV , HIV-1 , Inibidores da Transcriptase Reversa/farmacologia , Inibidores da Transcriptase Reversa/química , Relação Estrutura-Atividade , Transcriptase Reversa do HIV/metabolismo , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/química , Pirimidinas/farmacologia , Pirimidinas/química , HIV-1/metabolismo , Desenho de Fármacos
10.
Front Pharmacol ; 13: 979474, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386163

RESUMO

The adhesion of tumor cells to vascular endothelial cells is an important process of tumor metastasis. Studies have shown that tumor could educate vascular endothelial cells to promote tumor metastasis through many ways. However, the effect of tumor cells on the functions of vascular endothelial cells-derived extracellular vesicles (H-EVs) and the mechanisms underlying their effects in tumor-endothelium adhesion in metastasis remain mysterious. In this study, we found that H-EVs promoted the adhesion of triple negative breast cancer cell to endothelial cells and cirGal-3 enhanced the adhesion-promoting effects of H-EVs. The underlying mechanism was related to the upregulation of glycolysis in endothelial cells induced by cirGal-3 which led to the increase of the ICAM-1 expression and its transmission to MDA-MB-231 cells by H-EVs. Targeting of cirGal-3 or glycolysis of vascular endothelium in breast cancer therefore represents a promising therapeutic strategy to reduce metastasis.

11.
mSystems ; 7(5): e0041922, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36069452

RESUMO

The two-component system CpxRA can sense environmental stresses and regulate transcription of a wide range of genes for the purpose of adaptation. Despite extensive research on this system, the identification of the CpxR regulon is not systematic or comprehensive. Herein, genome-wide screening was performed using a position-specific scoring matrix, resulting in the discovery of more than 10,000 putative CpxR binding sites, which provides an extensive and selective set of targets based on sequence. More than half of the candidate genes ultimately selected (73/97) were experimentally confirmed to be CpxR-regulated genes through experimental analysis. These genes are involved in various physiological functions, indicating that the CpxRA system regulates complex cellular processes. The study also found for the first time that the CpxR-regulated genes ydeE, xylE, alx, and galP contribute to Escherichia coli resistance to acid stress, whereas prlF, alx, casA, yacH, ydeE, sbmA, and ampH contribute to E. coli resistance to cationic antimicrobial peptide stress. Among these CpxR-regulated genes, ydeE and alx responded to both stressors. In a similar way, a cationic antimicrobial peptide is capable of directly activating the periplasmic domain of CpxA kinase in vitro, which is consistent with the CpxA response to acid stress. These results greatly expand our understanding of the CpxRA-dependent stress response network in E. coli. IMPORTANCE CpxRA system is found in many pathogens and plays an essential role in sensing environmental signals and transducing information inside cells for adaptation. It usually regulates expression of specific genes in response to different environmental stresses and is important for bacterial pathogenesis. However, systematically identifying CpxRA-regulated genes and elucidating the regulative role of CpxRA in bacteria responding to environmental stress remains challenging. This study discovered more than 10,000 putative CpxR binding sites based on sequence. This bioinformatics approach, combined with experimental assays, allowed the identification of many previously unknown CpxR-regulated genes. Among the novel 73 CpxRA-regulated genes identified in this study, the role of nine of them in contributing to E. coli resistance to acid or cationic antimicrobial peptide stress was studied. The potential correlation between these two environmental stress responses provides insight into the CpxRA-dependent stress response network. This also improves our understanding of environment-bacterium interaction and Gram-negative pathogenesis.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Proteínas de Bactérias/genética , Proteínas Quinases/genética , Proteínas de Escherichia coli/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo
12.
Curr Pharm Des ; 28(18): 1466-1479, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35466866

RESUMO

Flavonoid glycosides play determinant roles in plants and have considerable potential for applications in medicine and biotechnology. Glycosyltransferases transfer a sugar moiety from uridine diphosphateactivated sugar molecules to an acceptor flavonoid via C-O and C-C linkages. Compared with O-glycosyl flavonoids, C-glycosyl flavonoids are more stable, resistant to glycosidase or acid hydrolysis, exhibit better pharmacological properties, and have received more attention. In this study, we discuss the mining of C-glycosyl flavones and the corresponding C-glycosyltransferases and evaluate the differences in structure and catalytic mechanisms between C-glycosyltransferase and O-glycosyltransferase. We conclude that promiscuity and specificity are key determinants for general flavonoid C-glycosyltransferase engineering and summarize the C-glycosyltransferase engineering strategy. A thorough understanding of the properties, catalytic mechanisms, and engineering of C-glycosyltransferases will be critical for future biotechnological applications in areas such as the production of desired C-glycosyl flavonoids for nutritional or medicinal use.


Assuntos
Flavonoides , Glicosiltransferases , Flavonoides/química , Glicosídeos/química , Glicosilação , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Plantas/metabolismo , Açúcares
13.
Commun Biol ; 5(1): 100, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35087210

RESUMO

Glycosyltransferases typically display acceptor substrate flexibility but more stringent donor specificity. BsGT-1 is a highly effective glycosyltransferase to glycosylate macrolides, including epothilones, promising antitumor compounds. Here, we show that BsGT-1 has three major regions significantly influencing the glycodiversification of epothilone B based on structural molecular docking, "hot spots" alanine scanning, and site saturation mutagenesis. Mutations in the PSPG-like motif region and the C2 loop region are more likely to expand donor preference; mutations of the flexible N3 loop region located at the mouth of the substrate-binding cavity produce novel epothilone oligosaccharides. These "hot spots" also functioned in homologues of BsGT-1. The glycosides showed significantly enhanced water solubility and decreased cytotoxicity, although the glycosyl appendages of epothilone B also reduced drug permeability and attenuated antitumor efficacy. This study laid a foundation for the rational engineering of other GTs to synthesize valuable small molecules.


Assuntos
Epotilonas/metabolismo , Glucosiltransferases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Epotilonas/química , Regulação Enzimológica da Expressão Gênica , Células Hep G2 , Hepatócitos , Humanos , Simulação de Acoplamento Molecular , Mutação , Engenharia de Proteínas
14.
Mol Pharm ; 19(1): 2-17, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34910493

RESUMO

In this study, a chitosan-based, self-assembled nanosystem that codelivered microRNA34a (miR34a) and doxorubicin (Dox) with hyaluronic acid (HA) modification (named CCmDH NPs) was developed to reverse the resistance of breast cancer (BCa) cells to Dox. The CCmDH NPs had a diameter of 180 ± 8.3 nm and a ζ potential of 16.5 mV with a slow-release effect for 96 h. The codelivery system could protect miR34a from nuclease and serum degradation and transport miR34a and Dox into drug-resistant MCF-7/A cells. In addition, the CCmDH NPs could inhibit proliferation and promote apoptosis by regulating the protein expression of B-cell lymphoma-2 (Bcl-2) and poly(ADP-ribose) polymerase (PARP) and inhibit invasion, metastasis, and adhesion by regulating E-cadherin, N-cadherin, MMP2, CD44, and Snail molecules. The CCmDH NPs induced a 73.7% tumor reduction in xenograft tumor growth in nude mice in vivo. This study provides evidence for the anticancer activity of CCmDH NPs carrying Dox and miR34a in BCa, especially metastatic Dox-resistant BCa models.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , MicroRNAs/administração & dosagem , Nanopartículas/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quitosana , Doxorrubicina/uso terapêutico , Combinação de Medicamentos , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Ácido Hialurônico , Ácido Linoleico , Células MCF-7/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/uso terapêutico , Transplante de Neoplasias
15.
Nucleic Acids Res ; 50(3): e15, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-34792175

RESUMO

Recombineering assisted multiplex genome editing generally uses single-stranded oligonucleotides for site directed mutational changes. It has proven highly efficient for functional screens and to optimize microbial cell factories. However, this approach is limited to relatively small mutational changes. Here, we addressed the challenges involved in the use of double-stranded DNA substrates for multiplex genome engineering. Recombineering is mediated by phage single-strand annealing proteins annealing ssDNAs into the replication fork. We apply this insight to facilitate the generation of ssDNA from the dsDNA substrate and to alter the speed of replication by elevating the available deoxynucleoside triphosphate (dNTP) levels. Intracellular dNTP concentration was elevated by ribonucleotide reductase overexpression or dNTP addition to establish double-stranded DNA Recombineering-assisted Multiplex Genome Engineering (dReaMGE), which enables rapid and flexible insertional and deletional mutagenesis at multiple sites on kilobase scales in diverse bacteria without the generation of double-strand breaks or disturbance of the mismatch repair system. dReaMGE can achieve combinatorial genome engineering works, for example, alterations to multiple biosynthetic pathways, multiple promoter or gene insertions, variations of transcriptional regulator combinations, within a few days. dReaMGE adds to the repertoire of bacterial genome engineering to facilitate discovery, functional genomics, strain optimization and directed evolution of microbial cell factories.


Assuntos
DNA , Engenharia Genética , Bactérias/genética , DNA de Cadeia Simples/genética , Genoma Bacteriano/genética , Oligonucleotídeos/genética
17.
Angew Chem Int Ed Engl ; 60(46): 24418-24423, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34498345

RESUMO

The knowledge on sulfur incorporation mechanism involved in sulfur-containing molecule biosynthesis remains limited. Chuangxinmycin is a sulfur-containing antibiotic with a unique thiopyrano[4,3,2-cd]indole (TPI) skeleton and selective inhibitory activity against bacterial tryptophanyl-tRNA synthetase. Despite the previously reported biosynthetic gene clusters and the recent functional characterization of a P450 enzyme responsible for C-S bond formation, the enzymatic mechanism for sulfur incorporation remains unknown. Here, we resolve this central biosynthetic problem by in vitro biochemical characterization of the key enzymes and reconstitute the TPI skeleton in a one-pot enzymatic reaction. We reveal that the JAMM/MPN+ protein Cxm3 functions as a deubiquitinase-like sulfurtransferase to catalyze a non-classical sulfur-transfer reaction by interacting with the ubiquitin-like sulfur carrier protein Cxm4GG. This finding adds a new mechanism for sulfurtransferase in nature.


Assuntos
Antibacterianos/biossíntese , Proteínas de Bactérias/metabolismo , Sulfurtransferases/metabolismo , Actinoplanes/genética , Actinoplanes/metabolismo , Antibacterianos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Indóis/análise , Indóis/química , Indóis/metabolismo , Família Multigênica , Pyrococcus/enzimologia , Pyrococcus/genética , Enxofre/metabolismo , Sulfurtransferases/química , Sulfurtransferases/genética , Ubiquitinação , Ubiquitinas/genética , Ubiquitinas/metabolismo
18.
Org Lett ; 23(17): 6967-6971, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34388000

RESUMO

A cryptic trans-acyltransferase polyketide synthase biosynthetic gene cluster sdl (80 kb) from Streptomyces sp. B59 was cloned and transferred into a heterologous host Streptomyces albus J1074, resulting in a class of polycyclic macrolide shuangdaolides A-D (1-4) and dumulmycin (5). Heterologous expression and gene inactivation experiments allowed the identification of two biosynthetic intermediates, 6 and 7, suggesting an unusual multidomain SDR oxidoreductase SdlR in charge of the formation of a rare 2-hydroxycyclopentenone moiety in this class of compounds.


Assuntos
Antibacterianos/biossíntese , Macrolídeos/química , Policetídeo Sintases/química , Inibidores da Síntese de Proteínas/química , Streptomyces/química , Antibacterianos/química , Macrolídeos/metabolismo , Estrutura Molecular , Família Multigênica , Policetídeo Sintases/metabolismo , Inibidores da Síntese de Proteínas/metabolismo
19.
Front Cell Dev Biol ; 9: 709075, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447752

RESUMO

Podophyllotoxin (PTOX) is a biologically active compound derived from the podophyllum plant, and both it and its derivatives possess excellent antitumor activity. The PTOX derivatives etoposide (VP-16) and teniposide (VM-26) have been approved by the U.S. Food and Drug Administration (FDA) for cancer treatment, but are far from perfect. Hence, numerous PTOX derivatives have been developed to address the major limitations of PTOX, such as systemic toxicity, drug resistance, and low bioavailability. Regarding their anticancer mechanism, extensive studies have revealed that PTOX derivatives can induce cell cycle G2/M arrest and DNA/RNA breaks by targeting tubulin and topoisomerase II, respectively. However, few studies are dedicated to exploring the interactions between PTOX derivatives and downstream cancer-related signaling pathways, which is reasonably important for gaining insight into the role of PTOX. This review provides a comprehensive analysis of the role of PTOX derivatives in the biological behavior of tumors and potential molecular signaling pathways, aiming to help researchers design and develop better PTOX derivatives.

20.
Sheng Wu Gong Cheng Xue Bao ; 37(6): 2026-2038, 2021 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-34227292

RESUMO

Podophyllotoxin (PTOX) is an aryl-tetralin lignan of plant origin found in some species of Podophyllum such as Dysosma versipellis, Diphylleia sinensis, and Sinopodophyllum hexandrum. Etoposide and teniposide are produced semisynthetically from PTOX and used clinically to treat several forms of cancer. As a typical representative of new drug discovery from natural products, the production of PTOX solely depends on extraction from plants, resulting in severe contradiction between supply and demand. With the advantages of unconstrained resources and eco-friendly reaction conditions, biosynthesis method has become a trend in the production of PTOX and its derivatives. In this review, we summarize the research progress of PTOX biosynthesis in plants and expound the functions of the key enzymes as well as their subcellular location. The synthetic biology for production of PTOX intermediates in a tobacco chassis is also introduced. Finally, the heterologous expression and biotransformation of PTOX in microorganisms is summarized, which sets the foundation for the efficient microbial production of PTOX using cell factories.


Assuntos
Podofilotoxina/biossíntese , Podophyllum , Genes de Plantas , Podophyllum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA